
® T H E S O U N D M A N A G E R

See Also Macintosh Technical Notes #168, and
#208

Audio Interchange File Format
specification

Macintosh Audio Compression/Expansion
specification

Written By Jim Reekes October 2nd, 1988

SOUND ADVICE

This document describes the System 6.0.2 Sound Manager. The
original chapter describing the Sound Manager is ambiguous,
inaccurate, and often contradicts itself. This chapter hopefully will
clear up the confusion and get developers using the Sound Manager
as was originally intended. This document replaces the Sound
Manager chapter originally published in Inside Macintosh Volume V.

The Sound Manager is a replacement for the older Sound Driver
documented in Inside Macintosh Volume II. The abilities of the Sound
Driver are currently supported by the Sound Manager and it will
utilize future hardware improvements. The Sound Manager offers
more flexible ways of doing things and, includes new features and
options, all requiring less programming effort. Many applications do
not require the use of sound and therefore do not need to be
concerned with the Sound Manager. Refer to the Human Interface
Guideline: The Apple Desktop Interface when using sound.

A fundamental knowledge of music and sound synthesis is presumed
in this document. There are utilities available from third parties that
aid in the development of creating sampled sound resources.
Creating wave table data or discussing the abilities of wave synthesis
versus sampled sound synthesis is not covered in this document. Two

good reference books are Computer Music, Synthesis, Composition,
and Performance by Charles Dodge and Thomas A. Jerse, and
Principles of Digital Audio by Ken Pohlman.

This document contains an overview of the Sound Manager, and a
detailed description of sound resources, routines and commands. All
of the known bugs and limitations are collected into one section, “The
Current Sound Manager”. A bug icon is used to point out information
contained in this section that is relative to the text being read. For
example, when reading about a sound command if a bug icon is
shown, make sure you have read the “Current Sound Manager”
section regarding that command.

TABLE OF CONTENTS

INTRODUCTION..3
USING THE SOUND MANAGER..4

The System Beep..5
The Note Synthesizer...5
The Wave Table Synthesizer...5

Figure 1 Graph of a Wave Table..6
The Sampled Sound Synthesizer..7

Figure 2 Sampled Sound Header..7
Table 1 Sample Rates..8

SOUND RESOURCES...10
The 'snd ' Resource..10

Figure 3 'snd ' Resource Layout..10
Format 1 'snd '..12
Example Format 1 'snd...13
Format 2 'snd '..14
Example Format 2 'snd '...14
The 'snth' Resource..15

Table 2 Synthesizer Resource IDs...15
SOUND MANAGER ROUTINES..16

Figure 4 Sound Channel and Routines.....................................16
SndPlay...16
SndNewChannel...17
SndAddModifier..18
SndDoCommand...19
SndDoImmediate..19
SndControl...19
SndDisposeChannel..19

SOUND MANAGER COMMANDS...20
Figure 5 Generic Command Format..20
Figure 6 noteCmd Format..24
Figure 7 freqCmd format..25

USER ROUTINES...28
PROCEDURE CallBack...28
FUNCTION Modifier...29

THE CURRENT SOUND MANAGER...31
Synthesizer Details...31
Sound Manager Bugs...33

SOUND MANAGER ABUSE..35
FREQUENTLY ASKED QUESTIONS...36
NOTE VALUES AND DURATIONS..39

Table 3 duration..39
Table 4 noteCmd values..40

SUMMARY OF THE SOUND MANAGER..41
Sound Manager Constants...41
Sound Manager Data Types..42
Sound Manager Routines...44

INTRODUCTION

The Sound Manager is a collection of routines that can be used to
create sounds without knowledge of, or dependence on, the hardware
available. By using the Sound Manager, applications are assured of
upward-compatibility with future hardware and software releases.
The Sound Manager will always take advantage of hardware
advancements. Applications using the Sound Manager now will gain
those advantages. When a command is sent to the Sound Manager, it
is really a request. For example, if sound code written to play on a
Macintosh II is being used on a Macintosh Plus or Macintosh SE
(which have slower CPU clocks and less capable audio hardware) the
Sound Manager will use synthesizers fitted best to those machine’s
abilities. Conversely, future Macintoshes may have improved audio
hardware, and that same code will be utilized by the Sound Manager
to take full advantage of these as-yet-undetermined hardwares. All of
this is transparent to the application, yet serves to make that
application compatible with the full line of Macintosh computers,
present and future.

A synthesizer is very similar to a device driver. A synthesizer is the
code responsible for interpreting the most general sound commands
and using the hardware available to produce it. A synthesizer is
stored as a resource which the Sound Manager will install.
Customized synthesizers are supplied for every Macintosh
configuration. Only one synthesizer can be active at any time.
Apple’s sound hardware is only supported when used with Apple’s
synthesizers. Writing synthesizers for Apple’s hardware is not
supported. Writing custom synthesizers for non-Apple hardware is
beyond the scope of this document. All references to synthesizers in
this document pertain to the Apple synthesizers that are supplied with
the Sound Manager.

Modifiers are used to perform pre-processing of commands before
they are received by a synthesizer. Modifiers can ignore, alter,
remove, or add commands, or perform periodic functions. A modifier
is a procedure in memory, or a resource which the Sound Manager
can install. For example, if the application wanted to play a melody
transposed up by an octave a modifier could be used to replace notes

with notes that are an octave higher.

Instructions for a synthesizer and modifier are sent through a
command queue called a sound channel. Sound channels provide a
means of linking applications to the audio hardware. The application
provides a sequence of commands which are processed through a
number of modifiers (if any) and finally through a synthesizer that
creates the sound with the hardware.

USING THE SOUND MANAGER

The Sound Manager code that runs on the Macintosh Plus is the same
that is used on the Macintosh SE. The code running on the Macintosh
II is different, since it has the Apple Sound Chip installed. The Apple
Sound Chip was developed to reduce the CPU’s involvement with
producing sound and to extend the capabilities of the Sound Manager.

The Sound Manager requires the use of the VIA1
timer T1. This conflicts with some third party
MIDI drivers. As such, it is not possible to use
both the Sound Manager and these MIDI
applications.

There are two types of resources used by the Sound Manager, 'snd '
and 'snth'. A 'snd ' resource contains data and/or commands. A
'snth' resource is code used as a synthesizer or modifier to interpret
the commands sent into a channel. Generally, applications only need
to be concerned with 'snd ' resources. More information on the
formats of 'snd ' resources and their use is given later.

The Sound Manager provides a range of methods for creating sound
on the Macintosh. Most applications will only need to use a few of
the Sound Manager routines. At the simplest end of the range is the
use of the note synthesizer to play a simple melody or _SndPlay.
_SndPlay only requires a proper 'snd ' resource. Such a resource
will contain the necessary information to create a channel linked to
the required synthesizer and the commands to be sent into that
channel. An application can use the following code to create a sound
with this method:

myChan := NIL;
sndHandle := GetNamedResource ('snd ', 'myBeep');
myErr := SndPlay (myChan, sndHandle, FALSE);

For more complete control of the sound channel, an application can open a sound channel with
_SndNewChannel. The application will then send commands to that channel with _SndDoCommand or
_SndDoImmediate. When the application’s sound is completed, the application closes the channel
with _SndDisposeChannel.

The System Beep

The trap _SysBeep is a call to the Sound Manager. The sound of the System Beep is selected by
the user in the Control Panel using the Sound 'cdev'. Except for the “Simple Beep”, _SysBeep
will be performed by the Sound Manager. If this sound is selected on a Macintosh that doesn’t
have the Apple Sound Chip (i.e. the Macintosh Plus and SE), the beep will be generated by the
original ROM code. This has the benefit of bypassing the Sound Manager and the potential
conflict of third party MIDI drivers which both use the VIA1 timer T1. Thus, this conflict over the
timer can be avoided by setting the System beep to the “Simple Beep” using the Sound 'cdev' in
the Control Panel.

If an application has an active synthesizer, then _SysBeep may not generate any sound. This is
because only one synthesizer can be active at any time. On a Macintosh without the Apple Sound
Chip (i.e. the Plus and SE) when the “Simple Beep” is selected the beep will be heard, since it
bypasses the Sound Manager. Applications should dispose of their channels as soon as they have
completed making sound, allowing the _SysBeep to be heard.

_SysBeep cannot be called at interrupt time since the Sound Manager
will attempt to allocate memory and load a resource.

Refer to the section “Current Sound Manager” regarding _SysBeep
on a Macintosh Plus and SE.

The Note Synthesizer

The note synthesizer is the simplest of all the synthesizers supplied with the Sound Manager. The
sound produced by this synthesizer is based upon a square wave. An application cannot play back
a wave form description or recorded sound when using this synthesizer. Very little set up is
required to use this synthesizer. It also has the advantage of using little CPU time. It can be used
for creating simple monophonic melodies.

The Wave Table Synthesizer

The wave table synthesizer will produce sounds based on a description of a single wave cycle.
This cycle is called a wave table and is represented as an array of bytes describing the timbre
(tone) of a sound. Applications may use any number of bytes to represent the wave, but 512 is the
recommended

length since the Sound Manager will re-sample it to this length. A wave table can be pulled in
from a resource or computed by the application at run time. To install a wave table in a channel,
use the waveTableCmd. Up to four wave table channels can be opened at once allowing an
application to play chords, melodies with harmonies and polyphonic melodies.

$FF

$80

$00

1 512

Time

Amplitude

single wave cycle

Packed Array of Bytes

Figure 1 Graph of a Wave Table

A wave table is a sequence of wave amplitudes measured at fixed intervals. Figure 1 represents a
sine wave being converted into a wave table by taking the value of the wave’s amplitude at every
1/512th interval. A wave table is represented as a PACKED ARRAY [1..512] OF BYTE. Each byte
may contain the value of $00 through $FF inclusive. These bytes are considered offset values
where $80 represents a zero level of amplitude, $00 is the largest negative value, and $FF is the
largest positive value. The wave table synthesizer loops through the wave table for the duration of
the sound.

Refer to the section “Current Sound Manager” regarding the wave
table synthesizer on the Macintosh Plus and SE.

The Sampled Sound Synthesizer

The sampled sound synthesizer will play back digitally recorded (or computed) sounds. These
sampled sounds are passed to the synthesizer in the form of a sampled sound header. This header
can be played at the original sample rate, or at other rates to change its pitch. The sampled sound
can be installed into a channel and then used as an instrument to play a sequence of notes. Thus a
sampled sound, such as a harpsichord, can be used to play a melody. This synthesizer is typically
used with pre-recorded sounds such as speech, songs or special effects. Developers concerned
with saving sampled sound files need to refer to the Audio Interchange File Format available from
the Apple Programmer’s and Developer’s Association. Figure 2 shows the structure of the
sampled sound header used by the sampled sound synthesizer.

Type

Pointer

Byte
Packed Array
[1..n] OF Byte

Byte

LongInt
Fixed
LongInt
LongInt

Name

samplePtr
length
sampleRate
loopStart
loopEnd
encode
baseNote
sampleArea

Figure 2 Sampled Sound Header

The first field of a sampled sound header is a POINTER. If the sampled sound is located
immediately in memory after the baseNote, this field is NIL, otherwise it will be a pointer to the
sample sound data. The length field is the number of bytes in the PACKED ARRAY [1..n] OF BYTE
containing the sampled sound, n being this length.

RATE DECIMAL HEX
 5kHz 5563.6363$15BB.A2E8
 7kHz 7418.1818$1CFA.2E8B
11kHz 11127.2727$2B77.45D1
22kHz 22254.5454$56EE.8BA3
44kHz 44100.0000$AC44.0000

Table 1 Sample Rates

The sampleRate is the rate at which the sample was originally recorded. These unsigned numbers
are of type FIXED. The approximate sample rates are shown in Table 1.

The loop points contained within the sample header specifies the portion of the sample to be used
by the Sound Manager when determining the duration of a noteCmd. These loop points specify
the byte numbers in the sampled data used as the beginning and ending points to cycle through
while playing the sound.

Refer to the section “Current Sound Manager” regarding the noteCmd
and looping with a sampled sound header.

The encode option is used to determine the method of encoding used in the sample. The current
encode options are shown below.

stdSH = $00 {standard sound header}
extSH = $01 {extended sound header}
cmpSH = $02 {compressed sound header}

The extended sample header (extSH) is the in-memory implementation of the Audio Interchange
File Format standard expected by the Sound Manager. The AIFF standard specifies up to 32 bit
sample sizes, up to 128 channels per file, and much more. Refer to the AIFF documentation for
more details. The compressed sample header (cmpSH) is the compressed sample counter-part of
the extended sample header. Refer to the Macintosh Audio Compression and Expansion
documentation for further information.

Developers are free to use their own encode options with values in
the range 64-127. Apple reserves the values 0 - 63.

The baseNote is the pitch at which the original sample was taken. If a harpsichord were sampled
while playing middle C, then the baseNote is

middle C. The baseNote values are 1 through 127 inclusive. (Refer to Table 4.) The baseNote
allows the Sound Manager to calculate the proper play back rate of the sample when an
application uses the noteCmd. Applications should not modify the baseNote of a sampled sound.
To use the sample at different pitches, send the noteCmd or freqCmd.

Refer to the section “Current Sound Manager” regarding limitations
with the noteCmd and freqCmd.

Each byte in the sampleArea data is similar in value to those in a wave table description. Each
byte is a value of $00 through $FF inclusive; $80 represents a zero level of amplitude, $00 is the
largest negative value, and $FF is the largest positive value.

The Sound Manager Summary contains the description of the data format to be used with 16 bit
sampled sounds. Developers wishing to write custom synthesizers for their hardware are
encouraged to use this data format. This data structure is intended to complement the use of the
AIFF standard.

SOUND RESOURCES

The 'snd ' Resource

Eight
Bytes

snd format

number of
synth/modifiers

synth resource ID

init option
for synth

number of
sound commands

Word

Long
Word

Word

Word

Word

first sound
command

sound data
(optional)????

last sound
command

last modifier
resource ID
init option
for modifier

Long
Word

Word

these fields may be
absent if “number of
synth/modifiers” is 0

Eight
Bytes

snd formatWord

Word reference count

Eight
Bytes

number of
sound commandsWord

first sound
command

sound data
(optional)????

last sound
command

Eight
Bytes

'snd ' Format 1 'snd ' Format 2

Figure 3 'snd ' Resource Layout

Sound resources are intended to be simple, portable, and dynamic
solutions for incorporating sounds into applications. Creating these
'snd ' or sound resources, requires some understanding of sound
synthesis to build a sampled sound header, wave table data, and
sound commands. There are two types of 'snd ' resources, format 1
and format 2. Figure 3 compares the structures of both of these
formats. These resources should have their purgeable bit set or the
application will need to call _HPurge after using the 'snd '.

The format 1 'snd ' was developed for use with the Sound Manager.
A format 1 'snd ' may be a sequence of commands describing a
melody without specifying a synthesizer or modifier and without
sound data. This would allow an application to use the _SndPlay
routine on any channel to play that melody. A format 1 'snd '
resource may contain a sampled sound or wave table data.

The format 2 'snd ' was developed for use with HyperCard. It is
intended for use with the sampled sound synthesizer only. A format 2
simply contains a sound command that points to a sampled sound
header.

HyperCard (versions 1.2.1 and earlier) contain
'snd ' resources incorrectly labeled as format 1.
Refer to Macintosh Technical Note #168.

Numbers for 'snd ' resources in the range 0
through 8191 are reserved for Apple. The 'snd '
resources numbered 1 through 4 are defined to be
the standard system beep.

A sound command contained in a 'snd ' resource with associated
sound data is marked by setting the high bit of the command. This
changes the param2 field of the command to be an offset value from
the resource’s beginning, pointing to the location of the sound data.
Refer to Figure 5 showing the structure of a sound command. To
calculate this offset, use one of the following formulas below.

For a format 1 'snd ' resource, the offset is calculated as follows:
offset = 4 + (number of synth/mods * 6) + (number of cmds * 8)

For a format 2 'snd ' resource, the offset is calculated as follows:

offset = 6 + (number of cmds * 8)

The first few bytes of the resource contain 'snd ' header information and are a different size for
either format. Each synthesizer or modifier specified in a format 1 'snd ' requires 6 bytes. The
number of synthesizers and/or modifiers multiplied by 6 is added to this offset. The number of
commands multiplied by 8 bytes, the size of a sound command, is added to the offset.

Format 1 'snd ' Resource

Figure 3 shows the fields of a format 1 'snd ' resource. This resource may also contain the
actual sound data for the wave table synthesizer or the sampled sound synthesizer. The number of
synthesizer and modifiers to be used by this 'snd ' is specified in the field number of
synth/modifiers. The synthesizer required to produce the sound described in the 'snd ' is
specified by the field synth resource ID. If any modifiers are to be installed, their resource IDs
follow the first synthesizer. Any synthesizer or modifier specified beyond this first one will be
installed into the channel as a modifier.

For every synthesizer and modifier, an init option can be supplied in the field immediately
following the resource ID for each synthesizer or modifier. The number of commands within the
resource is specified in the field number of sound commands. Each sound command follows in
the order they should be sent to the channel. If a command such as a bufferCmd is contained in
this resource, it needs to specify where in the resource the sampled sound header is located. This
is done by setting the high bit of the bufferCmd and supplying the offset in param2. Refer to the
section “Sound Manager Commands”.

The 'snd ' resource may be only a sequence of commands describing a melody playable by any
synthesizer. This allows the 'snd ' to be used on any channel. In this case the number of
synth/modifiers should be 0, and there would not be a synth resource ID nor init option in
the 'snd '.

Example Format 1 'snd '
The following example resource contains the proper information to create a sound with _SndPlay
and the sampled sound synthesizer.

HEX Size Meaning

{beginning of snd resource, header information}
$0001 WORD format 1 resource
$0001 WORD number of synth/modifiers to be installed

{synth ID to be used}
$0005 WORD resource ID of the first synth/modifier
$0000 0000 LONG initialization option for first synth/modifier

$0001 WORD number of sound commands to follow

{first command, 8 bytes in length}
$8051 WORD bufferCmd, high bit on to indicate sound data included
$0000 WORD bufferCmd param1
$0000 0014 LONG bufferCmd param2, offset to sound header (20 bytes)

{sampled sound header used in a soundCmd and bufferCmd}
$0000 0000 LONG pointer to data (it follows immediately}
$0000 0BB8 LONG number of samples in bytes (3000 samples)
$56EE 8BA3 LONG sampling rate of this sound (22kHz)
$0000 07D0 LONG starting of the sample’s loop point
$0000 0898 LONG ending of the sample’s loop point
$00 BYTE standard sample encoding
$3C BYTE baseNote (middle C) at which sample was taken

{Packed Array [1..3000] OF Byte, the sampled sound data}
$8080 8182 8487 9384 6F68 6D65 727B 8288
$918E 8D8F 867E 7C79 6F6D 7170 7079 7F81
$898F 8D8B...

Format 2 'snd ' Resource

The format 2 'snd ' resource is used by the sampled sound synthesizer only and must contain a
sampled sound. The _SndPlay routine supports this format by automatically opening a channel to
the sample sound synthesizer and using the bufferCmd.

Figure 3 shows the fields of a format 2 'snd ' resource. The field reference count is for the
application’s use and is not used by the Sound Manager. The fields number of sound commands
and the sound commands are the same as described in a format 1 resource. The last field of this
'snd ' is for the sampled sound. The first command should be either a soundCmd or bufferCmd
with the pointer bit set in the command to specify the location of this sampled sound header.
Any other sound commands in this 'snd ' will be ignored by the Sound Manager.

Example Format 2 'snd '
The following example resource contains the proper information to create a sound with _SndPlay
and the sampled sound synthesizer.

HEX Size Meaning

{beginning of 'snd ' resource, header information}
$0002 WORD format 2 resource
$0000 WORD reference count for application’s use
$0001 WORD number of sound commands to follow

{first command, 8 bytes in length}
$8051 WORD bufferCmd, high bit on to indicate sound data included
$0000 WORD bufferCmd param1
$0000 0014 LONG bufferCmd param2, offset to sound header (20 bytes)

{sampled sound header used in a soundCmd and bufferCmd}
$0000 0000 LONG pointer to data (it follows immediately}
$0000 0BB8 LONG number of samples in bytes (3000 samples)
$56EE 8BA3 LONG sampling rate of this sound (22kHz)
$0000 07D0 LONG starting of the sample’s loop point
$0000 0898 LONG ending of the sample’s loop point
$00 BYTE standard sample encoding
$3C BYTE baseNote (middle C) at which sample was taken

{Packed Array [1..3000] OF Byte, the sampled sound data}
$8080 8182 8487 9384 6F68 6D65 727B 8288
$918E 8D8F 867E 7C79 6F6D 7170 7079 7F81
$898F 8D8B...

The 'snth' Resource

The 'snth' resources are the routines that get linked to a sound channel used to create sound.
The calls to _SndPlay, _SndNewChannel, _SndAddModifier, and _SndControl are mapped with
unique 'snth' resources based on the hardware present on each Macintosh. The Sound Manager
first determines the type of Macintosh being used. Then, using the id specified in one of the four
routines above, adds a constant to this id. For the Macintosh Plus and SE, a constant of $1000 is
added to this id. For the Macintosh II, $800 is added to the id. If the mapped resource ID is not
available, the Sound Manager will use the actual id value specified.

The 'snth' resource IDs in the range 0 through 255 inclusive are
reserved for Apple within the 'snth' resource mapping range.

Resource ID Synthesizer Target Macintosh
$0001 noteSynth general for any Macintosh
$0003 waveTableSynth general for any Macintosh
$0005 sampledSynth general for any Macintosh
$0006-$00FF reserved for Apple general for any Macintosh
$0100-$0799 free for developers general for any Macintosh

$0801 noteSynth Mac with Apple Sound Chip$0803
waveTableSynth Mac with Apple Sound Chip
$0805 sampledSynth Mac with Apple Sound Chip
$0806-$08FF reserved for Apple Mac with Apple Sound Chip
$0900-$0999 free for developers Mac with Apple Sound Chip

$1001 noteSynth Mac Plus and SE
$1003 waveTableSynth Mac Plus and SE
$1005 sampledSynth Mac Plus and SE
$1006-$10FF reserved for Apple Mac Plus and SE
$1100-$1199 free for developers Mac Plus and SE

Table 2 Synthesizer Resource IDs

For example, if an application requested the sampled sound synthesizer while
running on the Macintosh Plus, it uses the resource ID of 5 when calling
_SndNewChannel. The Sound Manager will then open the 'snth' resource with
the ID of $1005 since this synthesizer is specific to the Macintosh Plus. Table 2
lists the current synthesizers and the IDs used by each Macintosh.

Refer to the section “Current Sound Manager” regarding
the Macintosh II 'snth' IDs.

SOUND MANAGER ROUTINES

Modifier(s)

Synthesizer

SndDoImmediate
bypasses the queue

SndAddModifier
installs a modifier

SndControl
returns information

Queue of
Sound

Commands

Audio Hardware

SndDoCommand
adds command to queue

SndNewChannel
SndDisposeChannel
creates and disposes
of the sound channel

Figure 4 Sound Channel and Routines

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle; async: BOOLEAN)
: OSErr;

The function _SndPlay is a higher level sound routine and is generally used separately from the
other Sound Manager calls. _SndPlay will attempt to play the sound specified in the 'snd '
resource located at sndHdl. This is the only Sound Manager routine that accepts a 'snd '
resource as one of its parameters. If a format 1 'snd ' specifies a synthesizer and any modifiers,
those 'snth' resource(s) will be loaded in memory and linked to the channel. All commands
contained in the 'snd ' will be sent to the channel. If the application passes NIL as the channel
pointer, _SndPlay will create a

channel in the application’s heap. The Sound Manager will release this memory after the sound
has completed. The async parameter is ignored if NIL is passed as the channel pointer.

If the application does supply a channel pointer in chan, the sound can be produced
asynchronously. When sound is played asynchronously, a completion routine can be called when
the last command has finished processing. This procedure is the userRoutine supplied with
_SndNewChannel. _SndPlay will call _HGetState on the 'snd ' resource before _HMoveHi and
_HLock, and once the sound has completed, will restore the state of the 'snd ' resource’s handle
with _HSetState.

If the format 1 'snd ' resource does not specify which synthesizer is to be used, _SndPlay will
default to the note synthesizer. _SndPlay will also support a format 2 'snd ' resource using the
sampled sound synthesizer and a bufferCmd. Note that a format 1 'snd ' must use have a
bufferCmd in order to be used with _SndPlay and the sampled sound synthesizer.

Do not use _SndPlay with a 'snd ' that specifies a synthesizer ID if
the channel has already been linked to a synthesizer.

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: INTEGER;
init: LONGINT; userRoutine: ProcPtr) : OSErr;

When NIL is passed as the chan parameter, _SndNewChannel will allocate a sound channel record
in the application’s heap and return its POINTER. Applications concerned with memory
management can allocate their own channel memory and pass this POINTER in the chan parameter.
Typically this should not present a problem since a channel should only be in use temporarily.
Each channel will hold 128 commands as a default size. The length of a channel can be expanded
by the application creating its own channel in memory.

The synth parameter is used to specify which synthesizer is to be used. The application specifies
a synthesizer by its resource ID, and this 'snth' resource will be loaded and linked to the
channel. The state of the 'snth' handle will be saved with _HGetState. To create a channel
without linking it with a synthesizer, pass 0 as the synth. This is useful when using _SndPlay with
a 'snd ' that specifies a synthesizer ID.

The application may specify an init option that should be sent to the synthesizer when opening
the channel. For example, to open the third wave table channel use initChan2 as the init. Only
the wave table synthesizer and sampled sound synthesizer currently use the init options. To
determine if a particular option is available by the synthesizer, use the availableCmd.

initChanLeft = $02; {left channel - sampleSynth only}
initChanRight = $03; {right channel- sampleSynth only}
initChan0 = $04; {channel 1 - wave table only}
initChan1 = $05; {channel 2 - wave table only}
initChan2 = $06; {channel 3 - wave table only}
initChan3 = $07; {channel 4 - wave table only}
initSRate22k = $20; {22k sampling rate - sampleSynth only}
initSRate44k = $30; {44k sampling rate - sampleSynth only}
initMono = $80; {monophonic channel - sampleSynth only}
initStereo = $C0; {stereo channel - sampleSynth only}

Refer to the section “Current Sound Manager” regarding init options
and the sampled sound synthesizer.

If an application is to produce sounds asynchronously or needs to be alerted when a command has
completed, it uses a CallBack procedure. This routine will be called once the callBackCmd has
been received by the synthesizer. If you pass NIL as the userRoutine, then any callBack
command will be ignored.

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;
 id: INTEGER; init: LONGINT) : OSErr;

This routine is used to install a modifier into an open channel specified in chan. The modifier
will be installed in front of the synthesizer or any existing modifiers in the channel. If the
modifier is saved as a 'snth' resource, pass NIL for the ProcPtr and specify its resource ID in
the parameter id. This will cause the Sound Manager to load the 'snth' resource, lock it in
memory, and link it to the channel specified. The state of the 'snth' resource handle will be
saved with _HGetState. Refer to the section “User Routines” for more information regarding
writing a modifier.

Refer to the section “Current Sound Manager” regarding modifier
resources.

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;
noWait: BOOLEAN) : OSErr;

This routine will send the sound command specified in cmd to the existing channel’s command
queue. If the parameter noWait is set to FALSE and the queue is full, the Sound Manager will wait
until there is space to add the command. If noWait is set to TRUE and the channel is full, the
Sound Manager will not send the command and returns the error “queueFull”.

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand): OSErr;

This routine will bypass the command queue of the existing channel and send the specified
command directly to the synthesizer, or the first modifier. This routine will also override any
waitCmd, pauseCmd or syncCmd that may have been received by the synthesizer or modifiers.

FUNCTION SndControl (id: INTEGER; VAR cmd: SndCommand) : OSErr;

This routine is used to send control commands directly to a synthesizer or modifier specified by its
resource ID. This can be called even if no channel has been created for the synthesizer. This
control call is used with the availableCmd or versionCmd to request information regarding a
synthesizer. The result of this call is returned in cmd.

FUNCTION SndDisposeChannel (chan: SndChannelPtr; quietNow: BOOLEAN) :
 OSErr;

This routine will dispose of the channel specified in chan and release all memory created by the
Sound Manager. If an application created its own channel record in memory or installed a sound
as an instrument, the Sound Manager will not dispose of that memory. The Sound Manager will
restore the original state of 'snth' resource handles with a call to _HSetState.

_SndDisposeChannel can either immediately dispose of a channel or wait until the queued
commands are processed. If quietNow is set to TRUE, a flushCmd and then a quietCmd is sent to
the channel. This will remove all commands, stop any sound in progress and close the channel. If
quietNow is set to FALSE, then the Sound Manager will issue a quietCmd only and wait until the
quietCmd is received by the synthesizer before disposing of the channel. In this situation
_SndDisposeChannel will be synchronous.

SOUND MANAGER COMMANDS

Command Descriptions

Sound commands are placed into a channel one after the other. At the
end of the channel is the synthesizer which interprets the command
and plays the sound with the hardware. All synthesizers are designed
to accept the most general set of sound commands. Some commands
are specific to only a particular synthesizer. There are some
commands and options that may not be currently implemented by a
synthesizer. Refer to section “The Current Sound Manager” for more
details.

command param1 param2

Pointer bit (used in 'snd ' resources only)

long wordwordword

Figure 5 Generic Command Format

Figure 5 shows the structure of a generic sound command.
Commands are always eight bytes in length. The first two bytes are
the command number, and the next six make up the command’s
options. The format of these last six bytes will depend on the
command being used.

The pointer bit is only used by 'snd ' resources that contain
commands and associated sound data (i.e. sampled sound or wave
table data). If the high bit of the command is set, then param2 is an
offset specifying where the associated data is located. This offset is
the number of bytes starting from the beginning of the resource to the
associated sound data. The section “Sound Resources” shows how
this offset is calculated.

cmd=nullCmd param1=0 param2=0

This command is sent by modifiers. It is simply absorbed by the Sound Manager
and no action is performed. Modifiers use a nullCmd to replace commands in a

channel to prevent them from being sent to a synthesizer.

cmd=initCmd param1=0 param2=init

This command is only sent by the Sound Manager. It will send an initCmd to the
synthesizer when an application uses the routines _SndPlay, _SndNewChannel or
_SndAddModifier. This causes a synthesizer or modifier to allocate its private
memory storage and to use the init option.

cmd=freeCmd param1=0 param2=0

This command is only sent by the Sound Manager. It is exactly opposite of the
initCmd. When an application calls _SndDisposeChannel, the Sound Manager
will send the freeCmd to the synthesizer. This causes the synthesizer to dispose of
all the private memory it had allocated.

cmd=quietCmd param1=0 param2=0

This command is sent by an application using _SndDoImmediate. It will cause the
synthesizer to stop any sound in progress. It is also sent by the Sound Manager
with the _SndDisposeChannel routine.

cmd=flushCmd param1=0 param2=0

This command is sent by an application using _SndDoImmediate. It will cause all
commands in the channel be be removed. It is also sent by the Sound Manager
from _SndDisposeChannel when quietNow is TRUE.

cmd=waitCmd param1=duration param2=0

This command is sent by an application or a modifier. It will suspend all
processing in the channel for the number of half-milliseconds specified in
duration. A one second wait would be a duration of 2000.

cmd=pauseCmd param1=0 param2=0

This command is sent by an application or a modifier to cause the channel to
suspend processing until a tickleCmd or resumeCmd is received.

cmd=resumeCmd param1=0 param2=0

This command is sent by an application or a modifier to cause a channel to
resume processing of commands. This is the opposite of the pauseCmd.

cmd=callBackCmd param1=user-defined
param2=user-defined

This command is sent by an application. The callBackCmd causes the Sound
Manager to call the userRoutine specified in _SndNewChannel. The two
parameters of this command can be used by the application for any purpose. This
allows an application to have a general userRoutine for any channel. By using
param1 and param2 with unique values, the CallBack procedure can test for
specific actions to take. Refer to the section “User Routines”.

This command is used as a marker for an application to determine at what point
the channel has reached in processing its queue. It is mostly used to determine
when to dispose of a channel, since the callBackCmd is generally the last
command sent. It can also be used to allow an application to synchronize sounds
with other actions.

cmd=syncCmd param1=count param2=identifier

This command is sent by an application. Every syncCmd is held in the channel,
suspending any further processing until its count equals 0. The Sound Manager
will first decrement the count and then wait for another syncCmd having the same
identifier to be received on another channel.

To synchronize four wave table channels, send the syncCmd to each channel with
count = 4 giving each command the same identifier. If a channel should wait
for two more syncCmds, then its count would be 3. If a channel is to wait for one
more syncCmd, its count would be sent as 2.

Refer to the section “Current Sound Manager” regarding
the count parameter of a syncCmd.

cmd=emptyCmd param1=0 param2=0

This command is only sent by the Sound Manager. Synthesizers expect to receive
additional commands after a resumeCmd. If no other commands are to be sent, the
Sound Manager will send an emptyCmd.

cmd=tickleCmdparam1=0 param2=0

This command is only sent by the Sound Manager to a modifier. This will cause
modifiers to perform their requested periodic actions. If the tickleCmd had been
requested by a howOftenCmd, then a tickleCmd will be sent periodically
according to the period specified in the howOftenCmd. If the tickleCmd had been
requested by an wakeUpCmd, then this command will be

sent only once according to the period specified in the wakeUpCmd. A tickleCmd
command will also resume a channel suspended by a pauseCmd.

cmd=requestNextCmd param1=count param2=0

This command is only sent by the Sound Manager in response to a modifier
returning TRUE. Refer to the section “User Routine” discussing modifiers. Count
is the number of consecutive times that the modifier has requested another
command.

cmd=howOftenCmd param1=period param2=pointer

This command is sent by a modifier and will instruct the Sound Manager to
periodically send a tickleCmd. Param1 contains the period (in half-milliseconds)
that a tickleCmd should be sent. Param2 contains a POINTER to the modifier
stub.

cmd=wakeUpCmd param1=period param2=pointer

This command is sent by a modifier and will instruct the Sound Manager to send a
single tickleCmd after the period specified (in half-milliseconds). Param2
contains a POINTER to the modifier stub.

The howOftenCmd and the wakeUpCmd are mutually
exclusive. Sending one will cancel the other.

cmd=availableCmd param1=result param2=init

This command is sent by an application to determine if certain characteristics
specified in the init parameter are available from the synthesizer. This
command can only be used with the _SndControl routine. These init options are
documented under the _SndNewChannel routine and are passed in param2 of the
availableCmd.

myCmd.cmd := availableCmd;
myCmd.param1 := 0;
myCmd.param2 := initStereo; {we’ll test for a stereo channel}
myErr := SndControl (sampledSynth, myCmd);
IF (myCmd.param1 <> 0) THEN stereoAvailable := TRUE;

The result is returned in param1. A result of 1 is returned if the synthesizer has the requested
characteristics. If it does not, the result is 0.

Refer to section “Current Sound Manager” regarding limitations with
the availableCmd.

cmd=versionCmd param1=0 param2=version

This command is sent by applications and the Sound Manager to determine which
version of the synthesizer is available. The versionCmd can only be sent with the
_SndControl routine. The version is returned in param2. Version 1.2 of a
synthesizer would be returned as $0001 0002.

cmd=noteCmd param1=duration
param2=amplitude + frequency

This command is sent by applications and modifiers to specify a note for either
the note synthesizer, or with an instrument installed into the channel. The
duration parameter is in half-milliseconds. A duration of 2000 would be a
duration of one second. The maximum duration is a duration of 32767 or about
16 seconds. The structure of a noteCmd is given in Figure 6.

noteCmd duration amp frequency

long wordwordword

Figure 6 noteCmd Format

The param2 of a noteCmd is a combination of an amplitude and a frequency. The
amplitude is passed in the high byte and the lower three bytes are the frequency
. The frequency can be specified in two ways, as a decimal note (refer to the
section “Note Values and Durations”) or a frequency value (refer to freqCmd).
The amplitude values range from $00 to $FF inclusively. The following example
demonstrates the use of a noteCmd.

amp := $FF000000; {loudest possible amplitude}
note := 60; {middle C}
myCmd.cmd := noteCmd;
myCmd.param1 := 2000; {one second duration}
myCmd.param2 := amp + note;
myErr := SndDoCommand(myChan, myCmd, FALSE);

The noteCmd will start at the beginning of a sampled sound. The
noteCmd uses the loop points of the header to extend the length of the
sound to the duration specified in a noteCmd. There must be a loop
ending point specified in the header in order for the noteCmd to work
properly.

Refer to the section “Current Sound Manager” regarding limitations
with the noteCmd and using amplitude.

cmd=restCmd param1=duration param2=0

This command is sent by applications and modifiers to cause the channel to rest
for the duration specified in half-milliseconds.

cmd=freqCmd param1=0 param2=frequency

This command is sent by applications and modifiers. A frequency can be sent to
a synthesizer to change the pitch of a sound. It is similar to the noteCmd in that a
decimal note value can be used instead of a frequency value. The structure of this
command is shown in Figure 7. If no sound is playing, it causes the synthesizer to
begin playing at the specified frequency for an indefinite duration. The upper
byte of param2 is ignored. A frequency value is sent in the lower three bytes of
param2, where the frequency desired is multiplied by 256. For example, to specify
a frequency of 440 Hz (the A below middle C) the frequency value would be 440
* 256 or 112640.

frequency

long wordwordword
freqCmd ignored

Figure 7 freqCmd format

Refer to the section “Current Sound Manager” regarding
the limitations of the freqCmd.

cmd=ampCmd param1=amplitude param2=0

This command is sent by applications and modifiers to change the amplitude of
the sound in progress. If no sound is currently playing, then it will affect the
amplitude of the next sound.

Refer to the section “Current Sound Manager” regarding
the use of amplitude.

cmd=timbreCmd param1=timbreparam2=0

This command is sent by applications and modifiers. It is used only by the note
synthesizer to change its timbre or tone. A sine wave is specified as 0 in

param1 and produces a flute-like sound. A value of 255 in param1 represents a
modified square wave and produces a buzzing or reed-like sound. Changing the
note synthesizer’s timbre should be done before playing the sound. Only a
Macintosh with the Apple Sound Chip will allow this command to be sent while a
sound is in progress.

cmd=waveTableCmd param1=length param2=pointer

This command is sent by applications. It is only used by the wave table
synthesizer. It will install a wave table to be used as an instrument by supplying a
POINTER to the wave table in param2.

All wave cycles will be re-sampled to 512 bytes.

cmd=phaseCmd param1=shift param2=pointer

This command is sent by applications. It is only used by the wave table
synthesizer to synchronize the phases of the wave cycles across different wave
table channels. As an example, if two wave table channels containing the same
wave cycle were sent the same noteCmd, they could not begin exactly at the same
time. Therefore, to synchronize the wave cycles for these two channels the
phaseCmd is sent.

This prevents the phasing effects of playing two similar waves together at the
same pitch. The channel will have its wave shifted by the amount specified in
shift to correspond with the wave’s phase in the channel specified in param2.
The shift value is a 16 bit fraction going from zero to one. The value of $8000
would be the half-way point of the wave cycle. Generally, the effects from this
command will not be noticed.

Refer to the section “Current Sound Manager” regarding
the phaseCmd.

cmd=soundCmd param1=0 param2=pointer

This command is sent by an application and is only used by the sampled sound
synthesizer. If the application sends this command, param2 is a POINTER to the
sampled sound locked in memory. The format of a sampled sound is shown in
section “The Sampled Sound Synthesizer”. This command will install the sampled
sound as an instrument for the channel. If the soundCmd is contained within a
'snd ' resource, the high bit of the command must be set. To use a sampled sound
'snd ' as an instrument , first obtain a POINTER to the sampled sound header
locked in memory. Then pass

this POINTER in param2 of a soundCmd. After using the sound, the application is
expected to unlock this resource and allow it to be purged.

cmd=bufferCmd param1=0 param2=pointer

This command is sent by applications and the Sound Manager to play a sampled
sound, in one-shot mode, without any looping. The POINTER in param2 is the
location of a sampled sound header locked in memory. The format of a sampled
sound is shown in section “The Sampled Sound Synthesizer”. A bufferCmd will be
queued in the channel until the preceding commands have been processed. If the
bufferCmd is contained within a 'snd ' resource, the high bit of the command
must be set. If the sound was loaded in from a 'snd ' resource, the application is
expected to unlock this resource and allow it to be purged after using it.

Refer to the section “Current Sound Manager” regarding
the bufferCmd.

cmd=rateCmd param1=0 param2=rate

This command is sent by applications to modify the pitch of the sampled sound
currently playing. The current pitch is multiplied by the rate in param2. It is
used for pitch bending effects. The default rate of a channel is 1.0. To cause the
pitch to fall an octave (or half of its frequency), send the rateCmd with param2
equal to one half as shown below.

myCmd.cmd := rateCmd;
myCmd.param1 := 0;
myCmd.param2 := FixedRatio(1, 2);
myErr := SndDoImmediate(myChan, myCmd);

cmd=continueCmd param1=0 param2=pointer

This command is sent by applications to the sampled sound synthesizer. It is
similar to the bufferCmd. Long sampled sounds may be broken up into smaller
sections. In this case, the application would use the bufferCmd for the first
portion and the continueCmd for any remaining portions. This will result in a
single continuous sound with the first byte of the sample being joined with the
last byte of the previous sound header without audible clicks.

Refer to the section “Current Sound Manager” regarding
the continueCmd.

USER ROUTINES

These user routines will be called at interrupt
time and therefore must not attempt to allocate,
move or dispose of memory, de-reference an
unlocked handle, or call other routines that do so.
Assembly language programmers must preserve
all registers other than A0-A1, and D0-D2. If these
routines are to use an application’s global data
storage, it must first reset A5 to the application’s
A5 and then restore it upon exit. Refer to
Macintosh Technical Note #208 regarding setting
up A5.

PROCEDURE CallBack(chan: SndChannelPtr; cmd: SndCommand);

The function _SndNewChannel allows a completion routine or CallBack procedure to be associated
with a channel. This procedure will be called when a callBackCmd is received by the synthesizer
linked to that channel. This procedure can be used for various purposes. Generally it is used by
an application to determine that the channel has completed its commands and to dispose of the
channel. The CallBack procedure itself cannot be used to dispose of the channel, since it may be
called at interrupt time.

A CallBack procedure can also be used to signal that a channel has reached a certain point in the
queue. An application may wish to perform particular actions based on how far along the
sequence of commands a channel has processed. Applications can use param1 or param2 of the
callBackCmd as flags. Based on certain flags for certain channels, the call back can perform many
different functions. The CallBack procedure will be passed the channel that received the
callBackCmd. The entire callBack command is also passed to the CallBack procedure.

myCmd.cmd := callBackCmd; {install the callBack command}
myCmd.param1 := 0; {not used in this example}
myCmd.param2 := SetCurrentA5; {pass the callBack our A5}
myErr := SndDoCommand (myChan, myCmd, FALSE);

The example code above is used to setup a callBackCmd. Note that param2 of a sound command is
a LONGINT. This can be used to pass in the application’s A5 to the CallBack procedure. Once this
command is received by the synthesizer, the following example CallBack procedure can set A5 in
order to access the application’s globals. The function’s SetCurrentA5 and SetA5 are documented
in Macintosh Technical Note #208.

Procedure SampleCallBack (theChan: SndChannelPtr; theCmd: SndCommand);

VAR
 theA5 : LONGINT;

BEGIN
 theA5 := SetA5(myCmd.param2); {set A5 and get current A5}
 callBackPerformed := TRUE; {global flag}
 theA5 := SetA5(theA5); {restore the current A5}
END;

FUNCTION Modifier(chan: SndChannelPtr; VAR cmd: SndCommand;
mod: ModifierStubPtr) : BOOLEAN

A modifier will be called when the command reaches the end of the queue, before being sent to
the synthesizer or other modifiers that may be installed. Chan will contain the channel pointer
allowing multiple wave table channels to be supported by the same modifier. The ModifierStub is
a record created by the Sound Manager during the call _SndAddModifier. A pointer to the
ModifierStub is in mod. There are two special commands that the modifier must support, the
initCmd and the freeCmd.

Refer to the section “Current Sound Manager” regarding modifiers
being saved as resources.

ModifierStub = PACKED RECORD
 nextStub: ModifierStubPtr; {pointer to next stub}
 code: ProcPtr; {pointer to modifier}
 userInfo: LONGINT; {free for modifier’s use}
 count: Time; {used internally}
 every: Time; {used internally}
 flags: SignedByte; {used internally}
 hState: SignedByte; {used internally}
END;

The initCmd is sent by the Sound Manager when an application calls _SndAddModifier. This is a
command telling the modifier to allocate any additional data. The ModiferStub contains a four
byte field, userInfo, that can be used as a pointer to this additional memory. The initCmd will not
be sent to a modifier at interrupt time. This allows a modifier to allocate memory and save the
current application’s A5. All memory storage allocated by the modifier must be locked, since the
modifier will be called at interrupt time.

The freeCmd will be sent to the modifier when the Sound Manager is disposing of the channel.
This command will not be sent at interrupt time. At this point the modifier should free any data it
may have allocated.

A modifier will be given the current command, before the command is sent to the synthesizer or
other modifiers. The current command is sent to the modifier in the variable cmd. A nullCmd is
never sent to a modifier. If the modifier wished to ignore the current command and allow it to be
sent on, it would return FALSE. To remove the current command, replace it with a nullCmd and
then return FALSE. To alter the current command, replace it with the new one and return FALSE.
Returning FALSE means that the modifier has completed its function.

If the modifier is to send additional commands to the channel, the function will return TRUE and
may or may not change the current command. The Sound Manager will call the modifier again
sending it a requestNextCmd. The modifier can then replace this command with the one desired.
The modifier can continue to return TRUE to send additional commands. The requestNextCmd will
indicate the number of times this command has been consecutively sent to the modifier.

Modifiers are short routines used to perform real-time modifications
on channels. Having too many modifiers, or a lengthy one, may
degrade performance.

THE CURRENT SOUND MANAGER

Synthesizer Details

This section documents the details for each of the current
synthesizers.

The Note Synthesizer

• The version shipped with System 6.0.2 is $0001 0002.

• Commands currently supported:
availableCmd versionCmd freqCmd

noteCmdrestCmd flushCmd
quietCmdampCmd timbreCmd

Limitations of the Note Synthesizer

• Amplitude change is only supported by a Macintosh with
the Apple Sound Chip, and is not supported by a
Macintosh Plus or Macintosh SE.

• Only a single monophonic channel can be used.

The Wave Table Synthesizer

• The version shipped with System 6.0.2 is $0001 0002.

• Commands currently supported:
availableCmd versionCmd freqCmd

noteCmdrestCmd flushCmd
quietCmdwaveTableCmd

Limitations of the Wave Table Synthesizer

• This synthesizer is not functioning on a Macintosh Plus or

Macintosh SE.

• A maximum of four channels can be open at any time.

• Amplitude change is not supported on any Macintosh.

• The one-shot mode is not supported on any Macintosh.

• The phaseCmd is not working.

The Sampled Sound Synthesizer

• The version shipped with System 6.0.2 is $0001 0002.

• Commands currently supported:
availableCmd versionCmd freqCmd

noteCmdrestCmd flushCmd
quietCmdrateCmd soundCmd
bufferCmd

Limitations of the Sampled Sound Synthesizer

• Amplitude change is not supported on any Macintosh.

• The current hardware will only support sampling rates up
to 22kHz. This is not a limitation to the playback rates,
and samples can be pitched higher on playback.

• There can only be a single monophonic channel; stereo is
not supported.

• The continueCmd is not working.

The MIDI Synthesizer

• The version shipped with System 6.0.2 is $0001 0002.

Limitations of the MIDI Synthesizer

• The midiDataCmd documented in Inside Macintosh
Volume V cannot be used.

• Fully functional MIDI applications cannot be written
using the current Sound Manager and were intended as a

“poor man’s” method of sending notes to a MIDI
keyboard.

• A bug in the MIDI synthesizer code prevents it from
working after calling _SndDisposeChannel.

Sound Manager Bugs

This is a list of all known bugs and possible work-arounds in the
System 6.0.2 Sound Manager. Each of these issues are being
addressed and are expected to be solved with the next Sound
Manager release.

Macintosh II 'snth' IDs

The System 6.0.2 'snth' resources for the Macintosh II are
incorrectly numbered. They should be $0801-$0805, but were
shipped as $0001-$0005. This does not currently present a problem
for applications, since the Sound Manager will default to these
versions while running on the Macintosh II.

availableCmd
The availableCmd is returning a value of 1, meaning TRUE, even if the
synthesizer is actually no longer available. For example, after calling
_SndNewChannel for the noteSynth, the availableCmd for the
noteSynth should return FALSE since there isn’t a second one.
Furthermore, considering that only one synthesizer can be active at
one time, after opening the noteSynth the sampledSynth is not
available, but this command reports that it is. The only time the
availableCmd will return FALSE is by requesting an init option that a
synthesizer doesn't support, such as stereo channels.

_SndAddModifier
A modifier resource used in multiple channels must be pre-loaded and
locked in memory by the application. There is a bug when the Sound
Manager is disposing of a channel causing the modifier to be
unlocked, regardless of other channels that may be using that
modifier. If the application locks the modifier before installing it in
the channel, the Sound Manager will not unlock it, but restores its
state with _HSetState.

syncCmd

This command has a bug causing the count to be decremented
incorrectly. To synchronize four channels, the same count = 4 should
be sent to all channels. The bug is with the Sound Manager
decrementing all of the count values with every new syncCmd. In
order to work around this, an application can synchronize four wave
table channels by sending the syncCmd with count = 4. Then a
syncCmd with the same identifier is sent to the second channel, this
time with count = 3. The third channel is sent a syncCmd with count
= 2. Finally, the last channel is sent with the count = 1. As

soon as the fourth syncCmd is received, all channels will have their
count at 0 and will resume processing their queued commands. This
bug will be fixed eventually, so test for the version of the synthesizer
being used before relying on this.

bufferCmd
Sending a bufferCmd will reset the channel’s amplitude and rate
settings. Since the amplitude is already being ignored and the rate
isn't typically used, this problem is not of much concern at this time.

noteCmd
This command may cause the sampled sound synthesizer to loop until
another command is sent to the channel. This occurs when using a
sampled sound installed as an instrument. If a noteCmd is the last
command in the channel, the sound will loop endlessly. The work-
around is to send a command after the final noteCmd. A callBackCmd,
restCmd or quietCmd would be good.

noteCmd and freqCmd
These commands currently only support note values 1 through 127
inclusive. Refer to Table 4 for these values.

_SysBeep
On a Macintosh Plus or SE (which do not have the Apple Sound Chip)
the Sound Manager will purge the application’s channel of its 'snth'
or sound data. The application would have to dispose of the channel
at this point and recreate a new one. This is another reason to release
channels as soon as the application has completed its sound. This bug
can be avoided by selecting the “Simple Beep” in the Control Panel’s
sound 'cdev'. Applications should dispose of all channels before
allowing a _SysBeep to occur. This includes putting up an alert or
modal dialog that could cause the system beep. Since a foreground
application under MultiFinder could cause a _SysBeep while the
sound application is in the background, all applications should dispose
of channels at a suspend event.

SOUND MANAGER ABUSE

Sound channels are for temporary use, and should only be created
just before playing sound. Once the sound is completed, the channel
should be disposed. Applications should not hold on to these channels
for extended periods. The amount of overhead in _SndNewChannel is
minimal. Basically, it is only a Memory Manager call. As long as the
application holds onto a channel linked to a synthesizer, the _SysBeep
call will not work and may cause trouble for the application’s channel.

Friendly applications will dispose of all open channels during a
suspend event from MultiFinder. If an application created a channel
and then gets sent into the background, any foreground application or
_SysBeep will be unable to gain access to the sound hardware.

Applications must dispose of all channels before calling _ExitToShell.
Currently, calling _ExitToShell while generating a sound on the
Macintosh Plus and SE will cause a system crash. So, calling
_SndDisposeChannel before _ExitToShell will solve this issue.
Setting quietNow to be FALSE will allow the application to complete
the sound before continuing.

Do not mix older Sound Driver calls with the newer Sound Manager
routines. The older Sound Driver should no longer be used. The
Sound Manager is its replacement, providing all of it predecessor’s
abilities and more. Note that _GetSoundVol and _SetSoundVol are
not part of the Sound Manager. They are used for setting parameter
RAM, not the amplitude of a channel. Support for the older Sound
Driver may eventually be discontinued.

The 'snd ' resource is so flexible that a warning of resource usage is
needed. Most of the problems developers have with the Sound
Manager are related more to the 'snd ' being used and less to the
actual routines. Editing and creating 'snd ' resources with ResEdit
is difficult. Many of the issues required in dealing with a 'snd ' are
not supported by third party utilities. It is best to limit the 'snd ' to
contain either sound data (i.e. sample sound) or a sequence of sound
commands. Do not attempt to create resources that contain multiple
sets of sound data.

Be very careful with what 'snd ' resources the application is
intending to support. Test for the proper format and proper fields
beforehand. An application needs to know the exact contents of the
entire 'snd ' in order to

properly handle it. Things can get ugly real quick considering variant
records, variable record lengths, and the pointer math that will be
required.

If an application wants to use _SndPlay with an existing channel
already linked to a synthesizer, the 'snd ' must not contain any synth
information. With a format 1 'snd ', the number of
synth/modifiers field must be 0, and no synth ID or init option
should be in the resource. Applications can only call _SndPlay with a
channel linked to a synthesizer using a format 1 'snd ' that contains
sound commands without synth information.

A format 2 'snd ' can never be used with _SndPlay more than once
with an existing channel. This 'snd ' is assumed to be for the
sampled sound synthesizer and _SndPlay will link this synthesizer to
the channel. If a channel is created before calling _SndPlay with a
format 2, specify synth = 0 in the call to _SndNewChannel. After
calling _SndPlay once, the application will have to dispose of the
channel before using a format 2 'snd ' again.

FREQUENTLY ASKED QUESTIONS

Q: Is there a way to determine if a sound is being made?

A: It is not possible at this time to determine if a synthesizer is
currently active or producing a sound. However, an application can
use the callBackCmd to determine when a sound has completed.

Q: How do I determine if the Apple Sound Chip is present?

A: There is no supported method for determining this. A new
_SysEnvirons record is being considered to contain this information.

Q: How can I use the Sound Manager for a metronome effect?

A: Use a modifier to send a noteCmd to the note synthesizer. The
modifier will use the howOftenCmd to cause the Sound Manager to
send a tickleCmd. Every time the modifier gets called, it can send a

noteCmd to cause the click.

Q: What is the maximum number of synthesizers that can be
opened at once? Can I have the noteSynth and the sampledSynth
open at the same time and produce sound from either?

A: Only one synthesizer can be active at any time. This is because
the active synthesizer “owns” the sound hardware until the channel is
disposed of.

Q: How can I tell if more than four wave table channels are
open or if another application has already open a synthesizer?

A: It is not possible at this time to determine when more than the
maximum number of wave table channels has been allocated due to a
limitation with the availableCmd. This issue is being investigated. It
is not possible to determine if a synthesizer is in use by another
application. If all applications would dispose of their channels at the
resume event, this would not be a problem.

Q: How do I get _SndPlay to play the sound asynchronously?
The Sound Manager seems to ignore the async parameter.

A: If NIL is used for the channel, then _SndPlay does ignore the async
flag. To play the sound asynchronously, create a new channel with
_SndNewChannel and pass this channel’s pointer to _SndPlay. Again, if
this 'snd ' contains 'snth' information you must not link a synthesizer
to the channel. Pass 0 as the synth in the call to _SndNewChannel.

Q: Should we use 'snd ' format 1 or format 2 for creating
sound resources?

A: The format 1 'snd ' is much more versatile. It can be used in the
_SndPlay routine for any synthesizer and requires minimal
programming effort. There is no recommendation for using either
format. A format 1 has more advantages, and may contain everything
a format 2 does. A format 2 is for a sampled sound only.

Q: I’ve opened a channel for the sampled sound synthesizer
and I’m using _SndPlay. After awhile the system either hangs
or crashes. What’s wrong?

A: This is the most common abuse of the Sound Manager. The 'snd '
being used has specified a 'snth' resource (a format 2 'snd ' is
assumed for the sampled sound synthesizer). The Sound Manager
will attempt to link this 'snth' to the channel with every call to
_SndPlay. What’s wrong is that the synthesizer has already been
installed and the Sound Manager is attempting to install it again, only
this time as a modifier. The same 'snth' code has been install more

than once in the channel. If the 'snd ' contains 'snth' information,
then _SndPlay can be used once and only once on a channel. There
two possible solutions: Do the pointer math to obtain the sampled
sound header and use the bufferCmd, or dispose of the channel after
each call to _SndPlay.

Q: How can I use a sampled sound to play a sequence of notes?

A: Begin by opening a sampled sound channel. Load and lock the
'snd ' resource containing the sample sound into memory. Then
obtain a pointer to the sampled sound header. Pass this pointer to the
channel using the soundCmd. Now the sound is installed and ready for
a sequence of noteCmds. This sampled sound must contain an ending
loop point or the noteCmd may not be heard.

Q: How do I change the play back rate of a sampled sound? Do
I use the freqCmd or the rateCmd?

A: It is possible to change the sampling rate contained in the
sampled sound header and then use the bufferCmd. The freqCmd
currently requires decimal note values and will not support real
frequency values. The rateCmd will only affect a sound that is
currently in progress and is used for pitch bending effects. It is
possible to add a few bytes of silence to the beginning of the sample
to allow the rateCmd enough time to adjust the play back rate without
hearing the bending affect on its pitch.

Q: How can I play multiple sampled sounds to play as a single
sampled sound without the glitch that is heard between each
sample on the Mac Plus?

A: On the Macintosh Plus or SE, the Sound Manager uses a 370 byte
buffer internally to play sampled sounds. If the array of sampled
sound data is in multiples of 370 bytes, the Sound Manager will not
have to pad its internal buffer with silence. Using double buffering
techniques, an application can send multiple sampled sounds using
the bufferCmd from a CallBack procedure to create a continuous
sound. Use this technique until the continueCmd is supported.

Q: How can I use the MIDI synthesizers with my own
keyboards?

A: They have too many limitations at this time. Don’t bother trying.

NOTE VALUES AND DURATIONS

Tempo in beats/min3060 90120150180
w whole note 160008000533340003200

2667
h half note 80004000266720001600

1333
q. dotted quarter note6000300020001500

1200 1000
q quarter note4000200013331000800 667
e. dotted eighth note300015001000750 600

500
e eighth note 20001000667500400333
x. dotted sixteenth note1500750500375 300

250
x sixteenth note1000500333250200167

Table 3 duration values

Table 3 shows the duration values that are used in a
waitCmd, howOftenCmd, wakeUpCmd, noteCmd, and
restCmd. Their duration is in half-millisecond values.
This chart will help in determining the actual
duration used in certain tempos. To calculate the
duration use the following formula.

duration = (2000/(beats per minute/60)) *
beats per note

To calculate the duration for a note at a given tempo,
divide the beats per minute by 60 to get the number of
beats per second. Then divide the beats per second
into 2000, which is the number of half-milliseconds in
a second. Multiply this ratio with the number of beats
the note should receive. For example, in a 4/4 time
signature each sixteenth note receives 1/4th of a beat.
If an application is playing a song in 120 beats per
minute and wanted four sixteenth notes, each
noteCmd would have a duration of 250.

AA# B C C#D D#E F F# GG#

Octave 1 1 2 3 4 5 6 7 8

Octave 2 9 10 1112 1314 1516 1718 1920

Octave 3 2122 2324 2526 2728 2930 3132

Octave 4 3334 3536 3738 3940 4142 4344

Octave 5 4546 4748 4950 5152 5354 5556

Octave 6 5758 596 0 61 6263 6465 6667 68

Octave 7 6970 7172 7374 7576 7778 7980

Octave 8 8182 8384 8586 8788 8990 9192

Octave 9 9394 9596 9798 99100 101 102103104

Octave 10 105106107 108109110 111112113 114115116

Octave 11 117118119 120121122 123124125 126127

Table 4 noteCmd values

Table 4 shows the values that can be sent with a noteCmd. Middle C is represented by a value of 60. These
values correspond to MIDI note values.

SUMMARY OF THE SOUND MANAGER

Sound Manager Constants

{ sound command numbers }
nullCmd = 0; {utility generally sent by Sound Manager}
initCmd = 1; {utility generally sent by Sound Manager}
freeCmd = 2; {utility generally sent by Sound Manager}
quietCmd = 3; {utility generally sent by Sound Manager}
flushCmd = 4; {utility generally sent by Sound Manager}
waitCmd = 10; {sync control sent by application or modifier}
pauseCmd = 11; {sync control sent by application or modifier}
resumeCmd = 12; {sync control sent by application or modifier}
callBackCmd = 13; {sync control sent by application or modifier}
syncCmd = 14; {sync control sent by application or modifier}
emptyCmd = 15; {sync control sent by application or modifier}
tickleCmd = 20; {utility sent by Sound Manager or modifier}
requestNextCmd = 21; {utility sent by Sound Manager or modifier}
howOftenCmd = 22; {utility sent by Sound Manager or modifier}
wakeUpCmd = 23; {utility sent by Sound Manager or modifier}
availableCmd = 24; {utility sent by application}
versionCmd = 25; {utility sent by application}
noteCmd = 40; {basic command supported by all synthesizers}
restCmd = 41; {basic command supported by all synthesizers}
freqCmd = 42; {basic command supported by all synthesizers}
ampCmd = 43; {basic command supported by all synthesizers}
timbreCmd = 44; {noteSynth only}
waveTableCmd = 60; {waveTableSynth only}
phaseCmd = 61; {waveTableSynth only}
soundCmd = 80; {sampledSynth only}
bufferCmd = 81; {sampledSynth only}
rateCmd = 82; {sampledSynth only}
continueCmd = 83; {sampledSynth only}

{ synthesizer resource IDs used with _SndNewChannel }
noteSynth = 1; {note synthesizer}
waveTableSynth = 3; {wave table synthesizer}
sampledSynth = 5; {sampled sound synthesizer}
midiSynthIn = 7; {MIDI synthesizer in}
midiSynthOut = 9; {MIDI synthesizer out}

{ init options used with _SndNewChannel }
initChanLeft = $02; {left channel - sampleSynth only}
initChanRight = $03; {right channel- sampleSynth only}
initChan0 = $04; {channel 0 - wave table only}
initChan1 = $05; {channel 1 - wave table only}
initChan2 = $06; {channel 2 - wave table only}
initChan3 = $07; {channel 3 - wave table only}
initSRate22k = $20; {22k sampling rate - sampleSynth only}
initSRate44k = $30; {44k sampling rate - sampleSynth only}
initMono = $80; {monophonic channel - sampleSynth only}
initStereo = $C0; {stereo channel - sampleSynth only}

stdQLength = 128; {channel length for holding 128 commands}

{ sample encoding options }
stdSH = $00 {standard sound header}
extSH = $01 {extended sound header}
cmpSH = $02 {compressed sound header}

{ Sound Manager error codes }
noErr = 0 {no error}
noHardware = -200 {no hardware to support synthesizer}
notEnoughHardware = -201 {no more channels to support synthesizer}
queueFull = -203 {no room left in the channel}
resProblem = -204 {problem loading the resource}
badChannel = -205 {invalid channel}
badFormat = -206 {handle to snd resource was invalide}

Sound Manager Data Types

Time = LONGINT;

SndCommand = PACKED RECORD
 cmd: INTEGER; {command number}
 param1: INTEGER; {first parameter}
 param2: LONGINT; {second parameter}
END;

ModifierStubPtr = ^ModifierStub;
ModifierStub = PACKED RECORD

 nextStub: ModifierStubPtr; {pointer to next stub}
 code: ProcPtr; {pointer to modifier}
 userInfo: LONGINT; {free for modifier’s use}
 count: Time; {used internally}
 every: Time; {used internally}
 flags: SignedByte; {used internally}
 hState: SignedByte; {used internally}
END;

SndChannelPtr = ^SndChannel;
SndChannel = PACKED RECORD

 nextChan: SndChannelPtr; {pointer to next channel}
 firstMod: ModifierStubPtr; {ptr to first modifier}
 callBack: ProcPtr; {ptr to call back procedure}
 userInfo: LONGINT; {free for application’s use}
 wait: Time; {used internally}
 cmdInProgress: SndCommand; {used internally}
 flags: INTEGER; {used internally}
 qLength: INTEGER; {used internally}
 qHead: INTEGER; {used internally}
 qTail: INTEGER; {used internally}
 queue: ARRAY [0..stdQLength-1] OF SndCommand;
END;

SoundHeaderPtr = ^SoundHeader;
SoundHeader = PACKED RECORD {sampled sound header}

 samplePtr: Ptr; {NIL if samples in sampleArea}
 length: LONGINT; {number of samples in array}
 sampleRate: Fixed; {sampling rate}
 loopStart: LONGINT; {loop point beginning}
 loopEnd: LONGINT; {loop point ending}
 encode: BYTE; {sample's encoding option}
 baseNote: BYTE; {base note of sample}
 sampleArea: PACKED ARRAY [0..0] OF Byte;
END;

{refer to the Audio Interchange File Format “AIFF” specification}
ExtSoundHeaderPtr = ^ExtSoundHeader;
ExtSoundHeader = PACKED RECORD {extended sample header}

 samplePtr: Ptr; {NIL if samples in sampleArea}
 length: LONGINT; {number of sample frames}
 sampleRate: Fixed; {rate of original sample}
 loopStart: LONGINT; {loop point beginning}
 loopEnd: LONGINT; {loop point ending}
 encode: BYTE; {sample's encoding option}
 baseNote: BYTE; {base note of original sample}
 numChannels: INTEGER; {number of chans used in sample}
 sampleSize: INTEGER; {bits in each sample point}
 AIFFSampleRate:EXTENDED;{rate of original sample}
 MarkerChunk: Ptr; {pointer to a marker info}
 InstrumentChunks:Ptr; {pointer to instrument info}
 AESRecording: Ptr; {pointer to audio info}
 FutureUse1: LONGINT;
 FutureUse2: LONGINT;
 FutureUse3: LONGINT;
 FutureUse4: LONGINT;
 sampleArea: PACKED ARRAY [0..0] OF Byte;
END;

Sound Manager Routines

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;
 noWait: BOOLEAN): OSErr;

INLINE $A803;

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand): OSErr;
INLINE $A804;

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: INTEGER;
 init: LONGINT; userRoutine: ProcPtr): OSErr;

INLINE $A807;

FUNCTION SndDisposeChannel (chan: SndChannelPtr;
 quietNow: BOOLEAN): OSErr;

INLINE $A801;

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;
 async: BOOLEAN): OSErr;

INLINE $A805;

FUNCTION SndControl (id: INTEGER; VAR cmd: SndCommand): OSErr;
INLINE $A806;

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;
 id: INTEGER; init: LONGINT): OSErr;

INLINE $A802;

PROCEDURE MyCallBack (chan: SndChannelPtr; cmd: SndCommand);

FUNCTION MyModifier (chan: SndChannelPtr; VAR cmd: SndCommand;
 mod: ModifierStub): BOOLEAN;

INDEX

A, B, C
A5 28, 29
ampCmd 25, 31
amplitude 6, 9, 24, 25, 31, 32, 34
Apple Sound Chip 4, 5, 26, 31, 34, 36
asynchronously 17, 18
Audio Interchange File Format 7, 8, 43
availableCmd 18, 19, 23, 31, 32, 33, 37
baseNote 7, 8, 13, 14
bufferCmd 12, 14, 17, 27, 32, 34, 37, 38
CallBack procedure 18, 22, 28, 38
callBackCmd 18, 22, 28, 36
channel 6, 7, 16, 17, 18, 19, 20, 22, 28,

30, 33, 35, 36, 37
cmpSH 8
Command Descriptions 20
command’s options 20
completion routine 17, 28
compressed sample header 8
Constants 41
continueCmd 27, 32, 38
control commands 19
Control Panel 5, 34
count 22, 23, 33
custom synthesizers 3

D, E, F, G
Data Types 42
default size 17
digitally recorded 7
duration 8, 24, 25, 39
emptyCmd 22
encode 8
ExitToShell 35
extended sample header 8, 43
extSH 8
flushCmd 19, 21, 31, 32
format 1 'snd ' 11, 12, 16, 17, 36, 37
format 2 'snd ' 11, 14, 17, 36
freeCmd 21, 29
freqCmd 9, 24, 25, 31, 32, 38
frequency 24, 25
Generic Command Format 20
GetSoundVol 35

H, I, J, K, L, M
heap 17
HGetState 17, 18
howOftenCmd 22, 23, 36
HPurge 11
HSetState 19, 33
HyperCard 11
identifier 22, 33
init 18, 23

init option 12, 18, 33, 36
init parameter 23
initCmd 21, 29
instrument 7, 24, 26, 34
interrupt time 5, 28, 29
loop point 8, 13, 14, 24, 38
Macintosh Audio Compression and

Expansion 8
Macintosh II 4, 15
Macintosh Plus 4, 15, 31, 34, 38
Macintosh SE 4, 15, 31, 34, 38
memory 16, 17, 18, 19, 21, 26, 27, 28, 35
MIDI 4, 5, 32, 38, 40
midiDataCmd 32
modifier 3, 12, 18, 23, 29, 33
modifier stub 23
monophonic channel 31, 32
MultiFinder 34, 35

N, O, P, Q, R
Note Synthesizer 5, 17, 25, 31
noteCmd 8, 9, 24, 25, 26, 31, 32, 34, 36,

38
noWait 19
nullCmd 20, 30
offset 11, 12, 13, 14, 20
one-shot mode 27, 32
pauseCmd 19, 21, 23
period 22, 23
periodic actions 22
phaseCmd 26, 32
phasing effects 26
pitch 7, 8, 25, 26, 27
pointer bit 14, 20
queueFull 19
quietCmd 19, 21, 31, 32
quietNow 19, 21, 35
RATE 8, 27, 34
rateCmd 27, 32, 38

reference count 14
requestNextCmd 23, 30
resource ID 12, 13, 15, 17, 18, 36, 41
Resource Layout 10
restCmd 25, 31, 32
resume event 37
resumeCmd 21, 22

S
sample header 8
sample rate 7, 8
sampleArea 9
sampled sound 9, 11, 14, 24, 26, 27
sampled sound header 7, 8, 11, 12, 14,

27, 37, 38
Sampled Sound Synthesizer 7, 13, 14, 17,

18, 26, 32
sampling rate 32, 38
SetA5 29
SetCurrentA5 28
SetSoundVol 35
Simple Beep 5
sine wave 6, 25
snd 4, 10, 11, 12, 13, 14, 16, 17, 20, 26,

27, 35, 37
SndAddModifier 15, 18, 21, 29, 33
SndControl 15, 19, 23, 24
SndDisposeChannel 19
SndDoCommand 19
SndDoImmediate 19
SndDisposeChannel 4, 21, 32, 35
SndDoCommand 4
SndDoImmediate 4, 21
SndNewChannel 4, 15, 17, 21, 22, 23, 28,

33, 35, 37
SndPlay 4, 11, 13, 14, 15, 16, 17, 21, 36,

37
snth 4, 15, 16, 17, 18, 33, 34, 37
sound channel 3, 17, 38
sound command 19
sound data 11, 12, 20, 34, 35
sound header 27
soundCmd 14, 26, 32, 38
square wave 5, 26
stdSH 8
stereo 18, 32
suspend event 34, 35
syncCmd 19, 22, 33
synchronize 22, 26, 33
synth 12, 13, 17, 36, 37
synthesizer 3, 12, 17, 20, 23
Synthesizer Details 31
Synthesizer Resource IDs 15
SysBeep 5, 34, 35
SysEnvirons 36
System Beep 5, 11

T, U, V, W, X, Y, Z
tickleCmd 21, 22, 23, 36
timbre 5, 25
timbreCmd 25, 31
userRoutine 17, 18, 22
versionCmd 19, 24, 31, 32
waitCmd 19, 21
wakeUpCmd 22, 23
wave table 5, 6, 11, 26
Wave Table Synthesizer 5, 18, 26, 31
waveTableCmd 6, 26, 31

